

		Da	ite:	10/11/2020
I	Description			
ç	SP 60-2-B			
	F 1			
		oduct picture may	differ from actual	product
ł	Product No.: 14A019C2			
ç	Submersible borehole pump, suitable for pu	Imping clean w	ater. Can be ir	stalled vertically or horizontally. All st
(components are made in stainless steel, EN carries drinking water approval.	N 1.4301 (AISI	304), that ensu	rres high corrosive resistance. This pu
	0 11	tor with cond o	nield meeheni	al shaft and water lubricated iournal
k	The pump is fitted with a 3 kW MS4000 moto bearings and a volume compensating diaph	ragm. The mo	tor is a canned	type submersible motor offering good
r	mechanical stability and high efficiency. Sui	itable for tempe	eratures up to 2	ю́°С.
	The motor is not fitted with a temperature se itted.	ensor. If tempe	rature monitori	ng is desired, a Pt1000 sensor can be
-	The motor is for direct-on-line starting (DOL)		
		-)-		
I	Further product details			
	The pump is suitable for applications simila	r to the followin	g:	
	navis state a strate bit			
	- raw-water supply			
	- irrigation			
	irrigationgroundwater lowering			
	- irrigation			
-	 irrigation groundwater lowering pressure boosting fountain applications. 	high efficiency	and already co	mplies with the requirements of the
-	 irrigation groundwater lowering pressure boosting fountain applications. 	high efficiency rundfos is amo	and already co ngst the best in	omplies with the requirements of the class within submersible pumps.
-	 irrigation groundwater lowering pressure boosting fountain applications. The Grundfos SP pump is renowned for its Minimum Efficiency Index, and therefore Gr EUP	high efficiency undfos is amo	and already congst the best in	omplies with the requirements of the class within submersible pumps.
ſ	 irrigation groundwater lowering pressure boosting fountain applications. The Grundfos SP pump is renowned for its Minimum Efficiency Index, and therefore Gr FEEP	high efficiency rundfos is amo	and already co ngst the best in	omplies with the requirements of the class within submersible pumps.
Γ	 irrigation groundwater lowering pressure boosting fountain applications. The Grundfos SP pump is renowned for its Minimum Efficiency Index, and therefore Gr FEEDP	high efficiency undfos is amo	and already co ngst the best in	omplies with the requirements of the class within submersible pumps.
ſ	 irrigation groundwater lowering pressure boosting fountain applications. The Grundfos SP pump is renowned for its Minimum Efficiency Index, and therefore Gr FEEP	high efficiency rundfos is amoi	and already congst the best in	omplies with the requirements of the class within submersible pumps.
	 irrigation groundwater lowering pressure boosting fountain applications. The Grundfos SP pump is renowned for its Minimum Efficiency Index, and therefore Gr FEEDP	high efficiency undfos is amo	and already co ngst the best in	omplies with the requirements of the class within submersible pumps.
	 irrigation groundwater lowering pressure boosting fountain applications. The Grundfos SP pump is renowned for its Minimum Efficiency Index, and therefore Gr FUNDER OF THE	rundfos is amoi umped liquids a	ngst the best in are made in sta	class within submersible pumps.
	 irrigation groundwater lowering pressure boosting fountain applications. The Grundfos SP pump is renowned for its Minimum Efficiency Index, and therefore Gr FERDY FEADY FUNDER STATE S	rundfos is amoi umped liquids a below shows th	ngst the best in are made in sta ne capabilities o	class within submersible pumps. ainless steel which makes them corros of the pump and motor in relation to th
	 irrigation groundwater lowering pressure boosting fountain applications. The Grundfos SP pump is renowned for its Minimum Efficiency Index, and therefore Gr FERDY FUNDER Pump All pump surfaces that are in contact with pland wear-resistant. The corrosion diagram is emperature in Celsius (y-axis) and the contact	umped liquids a below shows th	ngst the best in are made in sta ne capabilities o	class within submersible pumps. ainless steel which makes them corros of the pump and motor in relation to th
	 irrigation groundwater lowering pressure boosting fountain applications. The Grundfos SP pump is renowned for its Minimum Efficiency Index, and therefore Gr Fupp Pump All pump surfaces that are in contact with prand wear-resistant. The corrosion diagram for memperature in Celsius (y-axis) and the contact	umped liquids a below shows th centration of ch	ngst the best in are made in sta ne capabilities o	class within submersible pumps. ainless steel which makes them corros of the pump and motor in relation to th
	 irrigation groundwater lowering pressure boosting fountain applications. The Grundfos SP pump is renowned for its Minimum Efficiency Index, and therefore Gr EUP EUP Eu	umped liquids a below shows th centration of ch	ngst the best in are made in sta ne capabilities o loride in ppm (class within submersible pumps. ainless steel which makes them corros of the pump and motor in relation to th x-axis).
	 irrigation groundwater lowering pressure boosting fountain applications. The Grundfos SP pump is renowned for its Minimum Efficiency Index, and therefore Gr Function Pump All pump surfaces that are in contact with prand wear-resistant. The corrosion diagram emperature in Celsius (y-axis) and the contact with prand the contact with pran	umped liquids abelow shows the centration of ch	ngst the best in are made in sta ne capabilities o loride in ppm (class within submersible pumps. ainless steel which makes them corros of the pump and motor in relation to th x-axis).
	 irrigation groundwater lowering pressure boosting fountain applications. The Grundfos SP pump is renowned for its Minimum Efficiency Index, and therefore Gr Function Pump All pump surfaces that are in contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact with prand wear-resistant. The corrosion diagram for the contact wear-resistant.	umped liquids abelow shows the centration of ch	ngst the best in are made in sta ne capabilities o loride in ppm (class within submersible pumps. ainless steel which makes them corros of the pump and motor in relation to th x-axis).
	 irrigation groundwater lowering pressure boosting fountain applications. The Grundfos SP pump is renowned for its Minimum Efficiency Index, and therefore Gr Funp All pump surfaces that are in contact with prand wear-resistant. The corrosion diagram frequencies in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram frequencies in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram frequencies in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram frequencies in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram frequencies in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram frequencies in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram frequencies in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram frequencies in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram frequencies is the correst of the	umped liquids abelow shows the centration of ch	ngst the best in are made in sta ne capabilities o loride in ppm (class within submersible pumps. ainless steel which makes them corros of the pump and motor in relation to th x-axis).
	 irrigation groundwater lowering pressure boosting fountain applications. The Grundfos SP pump is renowned for its Minimum Efficiency Index, and therefore Gr Functions Pump All pump surfaces that are in contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant.	umped liquids amount of ch	ngst the best in are made in sta ne capabilities o loride in ppm (class within submersible pumps. ainless steel which makes them corros of the pump and motor in relation to th x-axis).
	 irrigation groundwater lowering pressure boosting fountain applications. The Grundfos SP pump is renowned for its Minimum Efficiency Index, and therefore Gr Functions Pump All pump surfaces that are in contact with prand wear-resistant. The corrosion diagram for memperature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memperature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memperature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memperature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memperature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memperature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memperature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memperature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memperature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memperature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for members of the prand wear-resistant. The corrosion diagram for members of the prand wear-resistant. The corrosion diagram for members of the prand wear-resistant. The corrosion diagram for members of the prand wear-resistant. The corrosion diagram for members of the prand wear-resistant. The corrosion diagram for members of the prand wear-resistant. The corrosion diagram for members of the prand wear-resistant. The corrosion diagram for members of the prand wear-resistant. The corrosion diagram for members of the prand wear-resistant.	umped liquids abelow shows the centration of ch	ngst the best in are made in sta ne capabilities o loride in ppm (class within submersible pumps. ainless steel which makes them corros of the pump and motor in relation to th x-axis).
	 irrigation groundwater lowering pressure boosting fountain applications. The Grundfos SP pump is renowned for its Minimum Efficiency Index, and therefore Gr Functions Pump All pump surfaces that are in contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant. The corrosion diagram for memberature in Celsius (y-axis) and the contact with prand wear-resistant.	umped liquids abelow shows the centration of ch	ngst the best in are made in sta ne capabilities o loride in ppm (class within submersible pumps. ainless steel which makes them corros of the pump and motor in relation to th x-axis).

Printed from Grundfos Product Centre [2020.10.020]

Date:

10/11/2020

Qty. Description

The elastomer parts in the pump are made of NBR (Nitrile-Butadiene Rubber) which ensures good wear resistance and long service intervals.

In case the pump is used for pumping water with high content of hydrocarbons or solvents, Grundfos offers FKM rubber parts (Fluorocarbon) which are oil and temperature-resistant up to 90 °C.

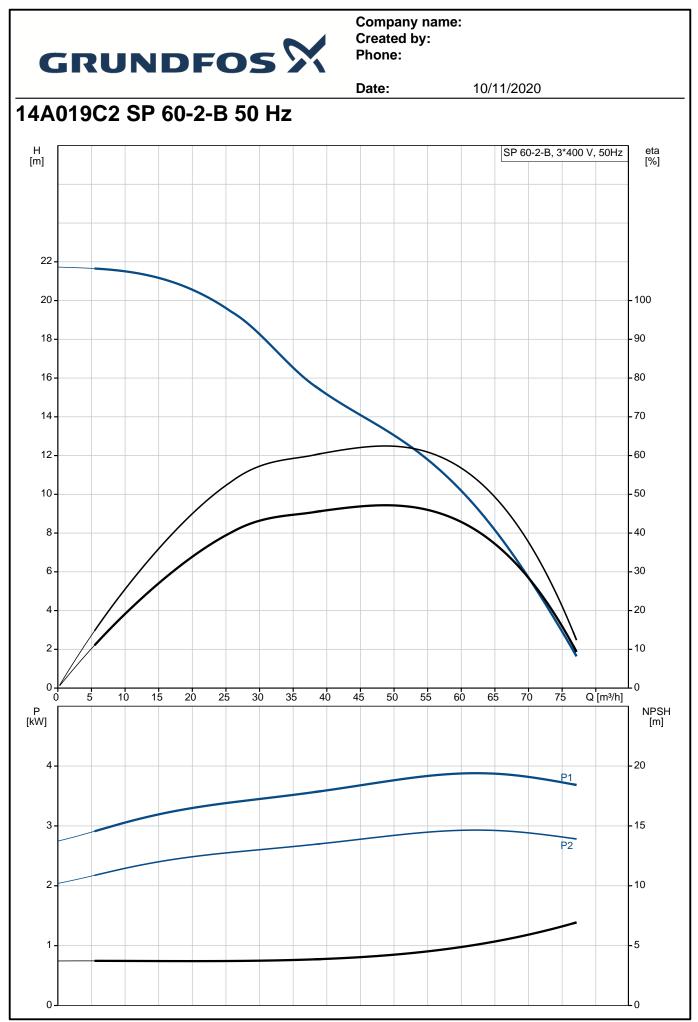
The pump is built with octagonal bearings with sand flush channels that minimise wear. As wear of the pump is inevitable, the pump design allows for easy replacement of all internal wear parts (bearings, impeller, wear rings and seal rings) to maintain high performance and a long lifetime.

The suction interconnector is fitted with a strainer to prevent large particles from entering the pump. The suction interconnector is designed to comply with NEMA standards for motor mounting/dimensions.

Motor

The stator is hermetically encapsulated in stainless steel and the windings are embedded in polymer compound. This results in high mechanical stability, optimum cooling and reduces the risk of short circuits in the windings.

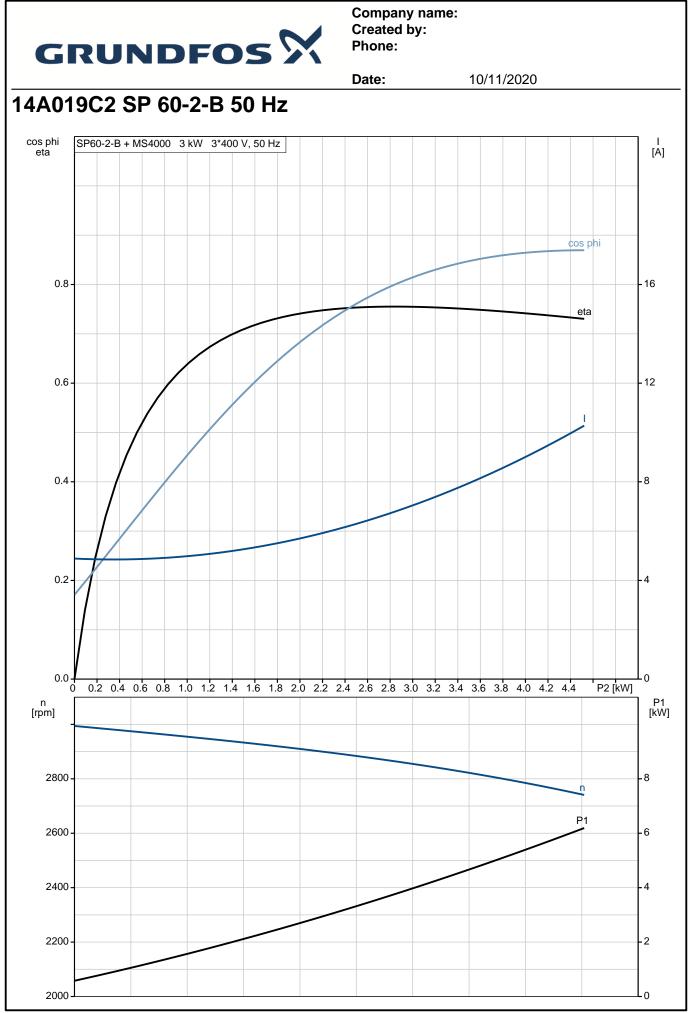
The shaft seal is a tungsten carbide/ceramic replaceable mechanical shaft seal. The material combination provides optimum sealing, resistance and long life. Together with the shaft seal housing, the sand shield forms a labyrinth seal, which during normal operating conditions prevents penetration of sand particles into the shaft seal.

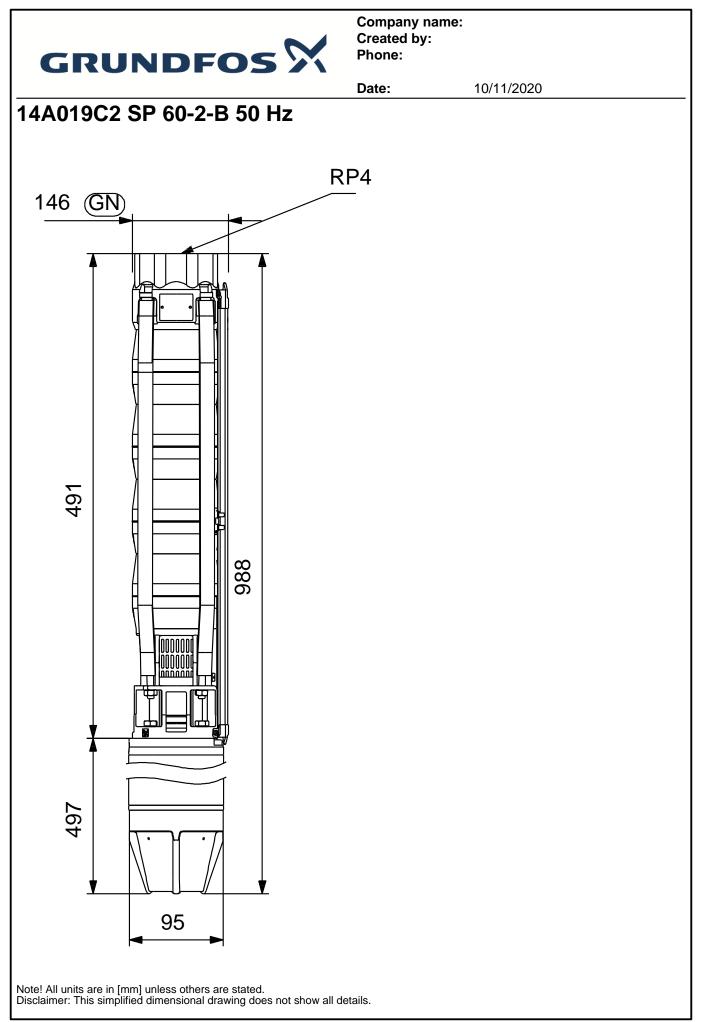

The motor can be fitted with a Pt100 or Pt1000 sensor that together with a control unit ensures that the maximum operating temperature conditions are not exceeded.

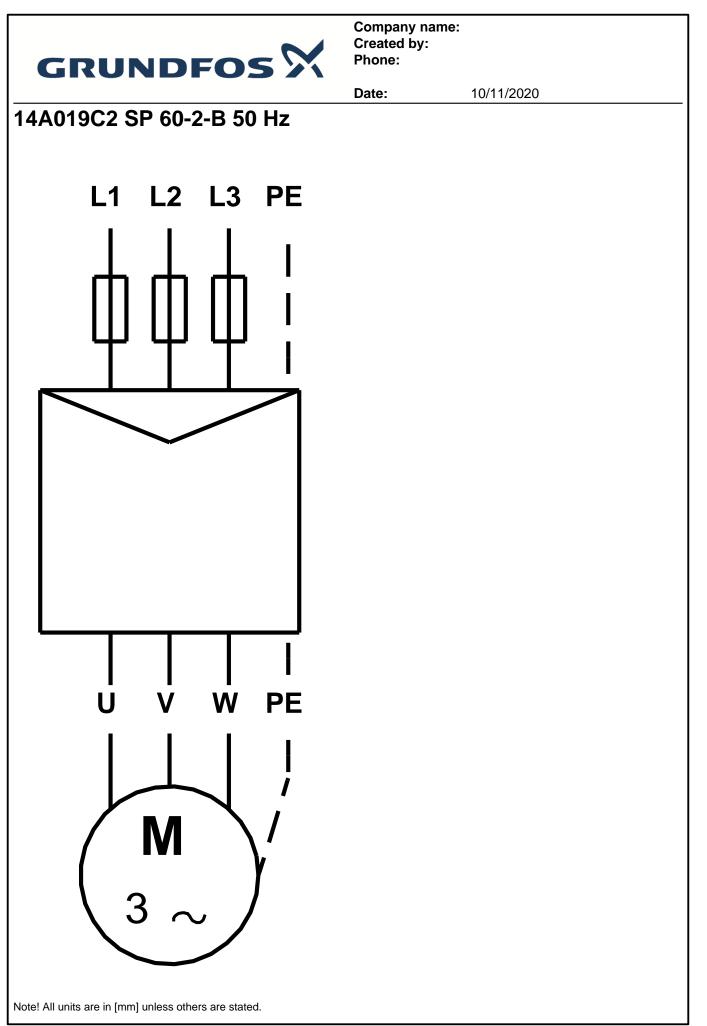
Liquid:

Pumped liquid: Pumped liquid: Maximum liquid temperature: Max liquid t at 0.15 m/sec: Selected liquid temperature: Density:	Water 40 °C 40 °C 20 °C 998.2 kg/m ³
Technical: Pump speed on which pump dat Rated flow: Rated head: Shaft seal for motor: Approvals on nameplate: Curve tolerance: Motor version:	a are based: 2900 rpm 60 m³/h 11 m HM/CER CE,EAC ISO9906:2012 3B T40
Materials: Pump:	Stainless steel EN 1.4301
Impeller: Motor:	AISI AISI 304 Stainless steel EN 1.4301 AISI AISI 304 Stainless steel DIN WNr. 1.4301 AISI 304
Installation: Pump outlet: Motor diameter:	RP4 4 inch
Electrical data: Motor type: Rated power - P2: Power (P2) required by pump: Mains frequency: Rated voltage: Rated current: Starting current: Cos phi - power factor:	MS4000 3 kW 3 kW 50 Hz 3 x 380-400-415 V 7.70-7.85-8.10 A 460-490-500 % 0.82-0.77-0.73

GRUNDF		Date:	10/11/2020	
Description				
Rated speed: Start. method: Enclosure class (IEC 34-5): Insulation class (IEC 85): Built-in temp. transmitter: Motor No:	2850-2865-2875 rpm direct-on-line IP68 F no 79194508			
Motor No:	79194508			
Others:				
Minimum efficiency index, MEI ErP status:	a‰¥: 0.40 EuP Standalone/Proc	4		
Net weight:	27.5 kg			
Gross weight:	30.1 kg			
Shipping volume:	0.032 m ³			
Finnish LVI No.:	4762752			
Country of origin:	GB			
Custom tariff no .:	84137029			




		Date:	10/11/2020		
Description	Value	H [m]	SP 60-2-B, 3*400 V, 50Hz [%]		
General information:					
Product name:	SP 60-2-B	-			
Product No:	14A019C2	22			
EAN number:	5700393963665	22-			
Price:	GBP 2694	20 -	100		
Technical:	GDF 2094	18 -	-90		
		-			
Pump speed on which pump data are based:	2900 rpm	16 -	80		
Rated flow:	60 m³/h	14-	10		
Rated head:	11 m	12 -	60		
Stages:	2	10 -	-50		
Impeller reduc.:	В				
Shaft seal for motor:	HM/CER	8-	40		
Approvals on nameplate:	CE,EAC	6-	30		
Curve tolerance:	ISO9906:2012 3B		\mathbf{N}		
Model:	В	4	-20		
Valve:	YES	2-	10		
Motor version:	T40	• • •			
Materials:		0 10	20 30 40 50 60 70 Q [m ³ /h]		
Pump:	Stainless steel	P [kW]	NPS [m		
Pump:	EN 1.4301				
Pump:	AISI AISI 304	4 -	P1 -20		
Impeller:	Stainless steel	3	P2 -15		
Impeller:	EN 1.4301				
Impeller:	AISI AISI 304	2			
Motor:	Stainless steel	_			
Motor:	DIN WNr. 1.4301	1-	5		
Motor:	AISI 304	_			
Installation:		0	L0		
Pump outlet:	RP4		RP4		
Motor diameter:	4 inch	146 GN			
Liquid:					
Pumped liquid:	Water				
Maximum liquid temperature:	40 °C				
Max liquid t at 0.15 m/sec:	40 °C				
Selected liquid temperature:	20 °C				
Density:	998.2 kg/m ³				
Electrical data:	-				
Motor type:	MS4000				
Applic. motor:	GRUNDFOS				
Rated power - P2:	3 kW				
Power (P2) required by pump:	3 kW	40 L. H 10			
Mains frequency:	50 Hz				
Rated voltage:	3 x 380-400-415 V	95			
Rated current:	7.70-7.85-8.10 A				
Starting current:	460-490-500 %	L1 L2 L3 PE			
Cos phi - power factor:					
	0.82-0.77-0.73	ФФį			
Rated speed:	2850-2865-2875 rpm	+ $+$ $+$ $+$ $+$ $+$ $+$			
Start. method:	direct-on-line				
Enclosure class (IEC 34-5):	IP68	. Ť			
nsulation class (IEC 85):	F	_			
Motor protec:	NONE				
Thermal protec:	external				
Built-in temp. transmitter:	no	U V W PE			
Motor No:	79194508				
Others:					
Minimum efficiency index, MEI ≥:	0.40	М \/			
ErP status:	EuP Standalone/Prod.	(3~)			
		$\cdots \sim \prime$			



		Date:	10/11/2020
Description	Value		
Net weight:	27.5 kg		
Gross weight:	30.1 kg		
Shipping volume:	0.032 m ³		
Finnish LVI No.:	4762752		
Country of origin:	GB		
Custom tariff no .:	84137029		

Printed from Grundfos Product Centre [2020.10.020]

